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We investigate the behavior of several noisy nonlinear dynamical models in order to find out whether the
presence of a common noise term may synchronize identical chaotic systems as recently supposed@S. Fahy and
D. R. Hamann, Phys. Rev. Lett.69, 761 ~1993!; A. Maritan and J. R. Banavar,ibid. 72, 1451 ~1994!#. The
results of the present study show that noise can speed up orbit convergence in a restricted context, but in
general cannot drive, by itself, a transition from chaotic to nonchaotic behavior.@S1063-651X~96!01406-7#

PACS number~s!: 05.45.1b

Nonlinear dynamical systems in a chaotic regime are
characterized by sensitive dependence on the initial condi-
tions @1#. Since the deterministic evolution of such systems
can display an apparently random character,a fortiori one
expects that in the presence of truly random forces the be-
havior of a chaotic system becomes even more ‘‘random.’’
Counter to this intuitive expectation, some recent results
@2,3# concerning Brownian-type motions in a confining po-
tential as well as some properly called chaotic systems have
been interpreted as evidence that noise may drive a transition
of nonlinear dynamical systems from a chaotic to nonchaotic
behavior, in the sense that the final trajectory is completely
independent of the initial conditions. In order to assess the
validity of this conclusion, we investigate in this paper the
behavior of several types of noisy nonlinear systems. The
results hereby obtained show no evidence that noise can in-
duce by itself synchronization of chaotic systems. On the
contrary, they make clear that the explanation of the behav-
ior observed in the literature@2,3# is to be found, as detailed
in the following, in other causes such as dissipation or biases
affecting noise. We observed, nevertheless, an important ef-
fect of noise~though less dramatic than synchronization of
the trajectories!: orbit convergence for particles subjected to
dissipation and to a nonlinear confining force is speeded up
by the presence of noise, provided that its amplitude is small
enough with respect to dissipation.

Let us first consider a particle moving in a potential
U(x), subject to a dissipation proportional to its velocity and
to a noise term

ẍ5F~x!2a ẋ1Ghsym, ~1!

whereF(x)52dU(x)/dx, a is the dissipation coefficient,
G is the noise amplitude, andhsym is a random number cho-
sen uniformly out of the interval@21,1#. We note that the
noise term is a symmetrical one, in the sense that its mean
value is zero. We exploited a numerical solution of Eq.~1!,
using a fourth-order Runge-Kutta scheme in which noise is
added at each interpolation point after scaling its amplitude
with the step size of the integration. Calculations were car-
ried out in double precision@4# with a time step of 0.001~test
runs were also performed with a time step of 0.0001). Upon
choosingU(x)5x4 ~the one-dimensional Duffing potential!,
we investigated orbit convergence by calculating the mean
square distances, in the (x,ẋ) phase space, between pairs of

particles obeying Eq.~1! ~with the samenoise!, averaged
over several (100) randomly chosen initial conditions.

Figure 1 showss as a function of the iteration number for
a50.1 and for different values ofG. WhenG50, the origin
(x50, ẋ50) is a point attractor for the system considered;
the asymptotic convergence rate is not very high: hence the
slow decrease ofs is hardly appreciable in the figure. As
soon as noise is switched on, this attractor loses its stability
and the orbits coalesce for long times into a single random
orbit independent of the initial conditions. We note that the
rate of convergence is considerably higher than that of the
nondriven damped system. For example, at a noise amplitude
G50.2, after 1000 time steps,s is about six orders of mag-
nitude smaller than when noise is absent. AsG increases, the
convergence rate initially increases~up to G;1), but then
orbit convergence slows down until, forG greater than a
threshold valueGc , the rate of convergence of the noisy
system becomes smaller that that of the nondriven oscillator
~as shown in Fig. 1, fora50.1 20,Gc,30). This inversion
monitors the transition to chaotic behavior: in fact as soon as
G increases aboveGc , synchronization is no longer observed
(s does not go to zero! and the final orbit depends randomly
on the initial conditions. Upon calculatingGc for different
values ofa, we were able to locate approximately in the
(a,G) plane the regions corresponding to chaotic and to non-

FIG. 1. Mean square distance versus number of iterations~each
unit represents 1000 iterations! between pairs of particles obeying
Eq. ~1! for a50.1. Each curve is labeled with the corresponding
value ofG. Results were averaged over 100 randomly chosen initial
conditions.
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chaotic behavior, respectively~see Fig. 2!. Though, as al-
ready remarked, the presence of noise in the nonchaotic re-
gion speeds up orbit convergence with respect to the non-
noisy case~theG50 axis!, it appears altogether evident that
the key role in driving the transition from chaotic to noncha-
otic behavior is played by dissipation rather than by noise. In
fact any path from the chaotic to the nonchaotic region im-
plies a decrease of the noise amplitudeG or, alternatively, an
increase ofG, provided that this effect is more than compen-
sated by a simultaneous increase of the dissipation coeffi-
cient. Behavior qualitatively similar to that reported above
has been observed for a variety of confining one-dimensional
potentials@5#.

Let us now reconsider, in the light of the present findings,
the results obtained by Fahy and Hamann@2#. These authors,
using a molecular dynamics approach, showed that particles
in a fixed external potential, driven by an identical sequence
of random forces~particles are stopped and restarted with
random velocities at regular intervals of lengtht), follow
random trajectories which become identical for long times if
t is small enough. In Ref.@2# this transition from chaotic to
nonchaotic behavior was attributed to the enhancement of
the random perturbation of the system resulting from a de-
crease oft. However, such an interpretation may be too
simplistic. In fact, the action of stopping and restarting the
particles can be thought of as an infinite damping force
turned on for an infinitesimal time at regular intervals, fol-
lowed by a random driving force with the appropriate im-
pulse@6#. Reducingt has then the double effect of increasing
noise and dissipation. It thus follows that the observed syn-
chronization cannot be attributed solely to noise. On the
other hand, since at variance with our model system it is
impossible to disentangle the two effects, one cannot study
the roles played by noise and dissipation, respectively.

The system studied in Ref.@2# was examined also by
Maritan and Banavar@3#, who noted that, in the limit of
small t, it can be understood in terms of the Langevin dy-
namics @7#. They showed that particles moving in a fixed
external potential and following a Langevin equation of the
form ẋW52¹W xU(xW )1hW (t), with the same noise, collapse
into the same trajectory at long times. This result was inter-

preted by Maritan and Banavar@3# as evidence of the sup-
posed synchronizing effect of noise. These authors, however,
did not thoroughly consider the implications of the above
argument as far as the causes of the predicted synchroniza-
tion are concerned. In fact, it is to be observed that~a! the
Langevin equation, assuming that velocity is proportional to
the force, is justified only for ‘‘overdamped’’ motions@7#;
~b! synchronization of the trajectories is predictedindepen-
dentlyof the noise amplitude. Thus, on the basis of the ar-
gument presented by Maritan and Banavar@3#, one can sim-
ply conclude that when dissipation is dominant with respect
to all the other forces acting on the system, synchronization
is expected for any noise amplitude, even for an arbitrarily
small one. This does not justify the assumption that the pre-
dicted transition is driven by the presence of noise. On the
contrary, these considerations suggest, in agreement with our
results, that the causes of the addressed transition from cha-
otic to nonchaotic behavior should be found in the dominant
role of dissipation.

Let us now turn our attention to the effect of noise on the
long-term behavior of properly called chaotic systems. Mari-
tan and Banavar@3# investigated numerically two such sys-
tems~i.e., the Lorenz system and the one-dimensional logis-
tic map!, drawing the conclusion that noise may in general
induce synchronization of chaotic systems. Here we will re-
examine both cases in detail. We first consider the Lorenz
system@1#

dx/dt5Px2Py~a!, dy/dt52xz1Rx2y~b!,

dz/dt5xy2Bz~c!, ~2!

with P510, R528, andB58/3. In Ref. @3# it was shown
that the addition of a noise term to any of the equations of
the Lorenz system causes orbit synchronization when the
noise level surpasses a threshold, but only if the noise is
asymmetric, i.e., of the typeGhasym, whereG is the ampli-
tude andhasym is a random number chosen uniformly out of
the interval @0,1#. No synchronization was observed for a
symmetric noise term. Such different behavior, pointed out,
but not explained, by Maritan and Banavar@3#, can illumi-
nate the origin of the observed phenomenon. In order to find
out why asymmetric and symmetric noises have such differ-
ent effects, we observe that choosing a number randomly
from the interval@0,1# is equivalent to choosing it from the
interval @21,1#, then adding 1, and dividing the result by 2.
In a statistical sense we can write

hasym[~hsym11!/2. ~3!

Thus an asymmetric noise of the type specified above is
nothing else than a symmetric noise superimposed upon a
constant background level. In Fig. 3 we show how the mean
square distances between pairs of trajectories depends on
time for the Lorenz system modified by adding to Eq.~2b!
the termGhasym, (G/2)hsym, or G/2, respectively@8#. We
chose a value ofG great enough to attain synchronization
with an asymmetric noise term. After a short initial transient,
s rapidly decreases when we add eitherGhasymor G/2: in-
dependently of the initial conditions, trajectories collapse
into the same final orbit~which is random only in the first
case!. It is important to stress that the slope of the curve is

FIG. 2. Plot ofGc ~defined in the text! versusa. The error bar
denotes the step used to incrementG when localizingGc . At
a50.03 anda50.05 this step is smaller than the dot dimension.
The labels NC and C indicate regions of nonchaotic and chaotic
behavior, respectively.

6552 53BRIEF REPORTS



the same in the two cases, which makes clear that the syn-
chronizing effect of the asymmetrical noise is determined not
by the random portion of the added term, whichby itself
induces no synchronization~see curvea), but by its constant
background level, i.e., by the noise mean value. In order to
confirm this interpretation, we studied the behavior of the
Lorenz system modified by adding to Eq.~2b! the term
Ghasymor G/2, as a function of the amplitudeG. We found
that synchronization is observed whenG is greater than a
threshold value which is approximately the same in the two
cases. Results qualitatively similar to those reported above
have been obtained for the Duffing oscillator@5#.

We consider now the noisy logistic map investigated in
Ref. @3#:

xn1154xn~12xn!1hn , ~4!

where 0,xn,1 andhn is a random number chosen uni-
formly out of the interval @2G,G# with the constraint
0,xn11,1: if a givenhn violates this condition it is dis-
carded and a newhn is chosen. ForG.Gc (Gc.0.5), tra-
jectories starting from different initial conditions collapse
into the same final orbit, when an identical sequence ofh ’s
is used independently of the initial condition@3#. This might
appear an example of synchronization induced by a sym-
metrical noise. However, as already observed by Maritan and
Banavar@3#, the procedure adopted in order thathn satisfies
the constraint 0,xn11,1 introduces a dependence of noise
on the state of the system. It follows that the acceptedh ’s,
though belonging to a symmetrical interval, are not uni-
formly distributed. Indeed, as shown in Fig. 4, the average
value h̄acc of the acceptedh ’s is negative for everyG and
tends to zero only forG→0. It follows that, similarly to the
Lorenz system, synchronization is attained by applying to the
logistic map a noise with a nonzero mean value. It is to be
stressed that this asymmetry, originating from the noise de-
pendence on the dynamics of the system, stems from a
deeper bias than that of a noise generated uniformly from an
asymmetric interval~such ashasym).

An obvious question is whether the logistic map can be
synchronized by a zero-mean noise. We note that a zero-

mean state-independent noise would simply bringxn rapidly
out of the basin of attraction. It is possible, however, by
choosing the h ’s from an opportune interval, to
modify h̄acc so that the noise acting on the map, though
state dependent, has a zero mean value. More specifically we
choose the h ’s out of the nonsymmetrical interval
@b2G,b1G#, where the limitationubu,G has to be re-
spected since if theh ’s are only positive or only negative the
condition 0,xn,1 will be rapidly violated. In Fig. 5h̄acc is
shown as a function ofb, for G50.6. The average value of
the acceptedh ’s increases monotonically withb and van-
ishes aroundb.0.365. In the same figure we show the frac-
tion l5Nc /N whereN is the number of different realiza-
tions (100) performed for eachb, andNc is the number of
realizations for which the distance between pairs of trajecto-
ries with randomly chosen initial conditions, at the end of the
run, is of the order of the numerical precision. We note that
l differs from zero inside a restricted interval centered

FIG. 3. Mean square distance versus number of iterations~each
unit represents 1000 iterations! for the Lorenz system modified by
adding to Eq.~2b!, respectively, (G/2)hsym ~curve a), Ghasym

~curveb), andG/2 ~curvec). Results were averaged over 100 ran-
domly chosen initial conditions.G520.

FIG. 4. h̄acc versusG for the logistic map, withh chosen out of
the interval@2G,G#. Results were averaged over 100 runs of 106

iterations starting from randomly chosen initial conditions. The line
is obtained by connecting points through straight line segments.

FIG. 5. h̄acc ~solid line! andl ~dashed and dotted lines! versus
b for the logistic map, withh chosen out of the interval
@b20.6,b10.6#. Results were averaged over 100 runs of 106 and
107 iterations starting from randomly chosen initial conditions. The
values ofh̄acc are indistinguishable in the two cases, while those of
l are represented with crosses and squares, respectively. Lines are
obtained by connecting points through straight line segments.

53 6553BRIEF REPORTS



aroundb50, and its value tends to 1 in the limit of an
infinite run length~as shown by the results obtained through
two different sets of calculation with run lengths of 106 and
107 iterations, respectively!. Outside this interval and thus
also in correspondence withh̄acc50, l is zero for both sets
of calculations performed and thus no synchronization is ex-
pected to occur. The above described behavior appears to be
independent of the value ofG as confirmed by similar calcu-
lations performed forG50.3, 0.8, and 1. A more general
analysis of the influence of noise on the stability properties
of one-dimensional~1D! maps will be presented in the future
@9#. Here, through a linear stability analysis, it is shown that
the addition to a generic chaotic 1D map with a limited basin
of attraction of a noise satisfying the resulting constraint
does not always induce synchronization of the trajectories,
and may even enhance, rather than reduce, orbital diver-
gence.

In conclusion, the present results show no evidence that

coupling nonlinear systems in a chaotic regime through iden-
tical unbiasednoises does in general give origin to orbit
synchronization. We found, however, an important effect of
noise: particles subjected to dissipation and to a nonlinear
confining force, when driven by an identical sequence of
random forces of small amplitude with respect to dissipation,
converge to a single final trajectory much faster than when
noise is absent. Since noise is ubiquitous in real systems, this
result would suggest that, provided that noise is not too
strong, memory of the initial state is generally lost more
rapidly than expected with dissipative forces only.
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