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Noise and synchronization in chaotic systems
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We investigate the behavior of several noisy nonlinear dynamical models in order to find out whether the
presence of a common noise term may synchronize identical chaotic systems as recently §$ppwdand
D. R. Hamann, Phys. Rev. Le#9, 761 (1993; A. Maritan and J. R. Banavaibid. 72, 1451(1994)]. The
results of the present study show that noise can speed up orbit convergence in a restricted context, but in
general cannot drive, by itself, a transition from chaotic to nonchaotic beh&8bd63-651X96)01406-1

PACS numbd(s): 05.45+b

Nonlinear dynamical systems in a chaotic regime arearticles obeying Eq(1) (with the samenoise, averaged
characterized by sensitive dependence on the initial condiever several (100) randomly chosen initial conditions.
tions [1]. Since the deterministic evolution of such systems Figure 1 showsr as a function of the iteration number for
can display an apparently random charactefortiori one  «=0.1 and for different values df. WhenI" =0, the origin
expects that in the presence of truly random forces the bgx=0, x=0) is a point attractor for the system considered;
havior of a chaotic system becomes even more “random.’the asymptotic convergence rate is not very high: hence the
Counter to this intuitive expectation, some recent resultslow decrease ofr is hardly appreciable in the figure. As
[2,3] concerning Brownian-type motions in a confining po- soon as noise is switched on, this attractor loses its stability
tential as well as some properly called chaotic systems havand the orbits coalesce for long times into a single random
been interpreted as evidence that noise may drive a transitiasrbit independent of the initial conditions. We note that the
of nonlinear dynamical systems from a chaotic to nonchaoti¢ate of convergence is considerably higher than that of the
behavior, in the sense that the final trajectory is completelyiondriven damped system. For example, at a noise amplitude
independent of the initial conditions. In order to assess th¢ =0.2, after 1000 time steps; is about six orders of mag-
validity of this conclusion, we investigate in this paper thenitude smaller than when noise is absentIAsicreases, the
behavior of several types of noisy nonlinear systems. Theonvergence rate initially increasésp to I'~1), but then
results hereby obtained show no evidence that noise can imrbit convergence slows down until, fdt greater than a
duce by itself synchronization of chaotic systems. On thethreshold valuel';, the rate of convergence of the noisy
contrary, they make clear that the explanation of the behavsystem becomes smaller that that of the nondriven oscillator
ior observed in the literatur?,3] is to be found, as detailed (as shown in Fig. 1, forn=0.1 20<I".<30). This inversion
in the following, in other causes such as dissipation or biasemonitors the transition to chaotic behavior: in fact as soon as
affecting noise. We observed, nevertheless, an important ef* increases abovE,, synchronization is no longer observed
fect of noise(though less dramatic than synchronization of (¢ does not go to zejaand the final orbit depends randomly
the trajectoriep orbit convergence for particles subjected to on the initial conditions. Upon calculating, for different
dissipation and to a nonlinear confining force is speeded Upajues ofa, we were able to locate approximately in the

by the presence of noise, provided that its amplitude is smally T) plane the regions corresponding to chaotic and to non-
enough with respect to dissipation.

Let us first consider a particle moving in a potential
U(x), subject to a dissipation proportional to its velocity and
to a noise term

X=F(x) = ax+T ngym, (1)

whereF(x)=—dU(x)/dx, « is the dissipation coefficient, ST
I" is the noise amplitude, angk,, is a random number cho-
sen uniformly out of the intervdl—1,1]. We note that the
noise term is a symmetrical one, in the sense that its mean
value is zero. We exploited a numerical solution of EL,
using a fourth-order Runge-Kutta scheme in which noise is s . . . .
added at each interpolation point after scaling its amplitude 0 20 ooy 800 1000

with the step size of the integration. Calculations were car-

ried out in double precisiop#] with a time step of 0.00ttest FIG. 1. Mean square distance versus number of iteratieash
runs were also performed with a time step of 0.0001). Uponynit represents 1000 iterationsetween pairs of particles obeying
choosingU(x)=x* (the one-dimensional Duffing potential  Eq. (1) for a=0.1. Each curve is labeled with the corresponding
we investigated orbit convergence by calculating the meaRalue ofl". Results were averaged over 100 randomly chosen initial
square distance, in the (x,x) phase space, between pairs of conditions.
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200 , , : : : : preted by Maritan and Banav@B] as evidence of the sup-
, posed synchronizing effect of noise. These authors, however,
. did not thoroughly consider the implications of the above
180 A 1 argument as far as the causes of the predicted synchroniza-
T, e tion are concerned. In fact, it is to be observed ttatthe
ol o ] Langevin equation, assuming that velocity is proportional to
. the force, is justified only for “overdamped” motior§];
X (b) synchronization of the trajectories is predictedepen-
ol T NG 1 dently of the noise amplitude. Thus, on the basis of the ar-
L gument presented by Maritan and Banal\@&r one can sim-
A ply conclude that when dissipation is dominant with respect
ol e-r s s ; : : to all the other forces acting on the system, synchronization
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 . . . . .
a is expected for any noise amplitude, even for an arbitrarily
small one. This does not justify the assumption that the pre-
FIG. 2. Plot ofl" (defined in the tejtversusa. The error bar dicted transition is Qriven .by the presence of noise. O_n the
denotes the step used to incremdhtwhen localizingT,. At contrary, these considerations suggest, in agreement with our
a=0.03 anda=0.05 this step is smaller than the dot dimension. "€Sults, that the causes of the addressed transition from cha-
The labels NC and C indicate regions of nonchaotic and chaoti@tic to nonchaotic behavior should be found in the dominant
behavior, respectively. role of dissipation.

Let us now turn our attention to the effect of noise on the
chaotic behavior, respectivelgee Fig. 2 Though, as al- long-term behavior of properly called chaotic systems. Mari-
ready remarked, the presence of noise in the nonchaotic réan and Banaval3] investigated numerically two such sys-
gion speeds up orbit convergence with respect to the nortems(i.e., the Lorenz system and the one-dimensional logis-
noisy casdthe’=0 axi9, it appears altogether evident that tic map, drawing the conclusion that noise may in general
the key role in driving the transition from chaotic to noncha-induce synchronization of chaotic systems. Here we will re-
otic behavior is played by dissipation rather than by noise. Irexamine both cases in detail. We first consider the Lorenz
fact any path from the chaotic to the nonchaotic region im-System[1]
plies a decrease of the noise amplitdder, alternatively, an
increase of’, provided that this effect is more than compen- dx/dt=Px—Py(a), dy/dt=—xz+Rx-y(b),
sgted by a simultangogs incrggse of the dissipation coeffi- dz/dt=xy—Bzc), )
cient. Behavior qualitatively similar to that reported above
has be_en observed for a variety of confining one-dimensiongli, p= 10, R=28, andB=8/3. In Ref.[3] it was shown
potentials[S]. that the addition of a noise term to any of the equations of

Let us now reconsider, in the light of the present findingshe |orenz system causes orbit synchronization when the
the results obtained by Fahy and Ham4Bh These authors, gise level surpasses a threshold, but only if the noise is

using a molecular dynamics approach, showed that partideésymmetric, i.e., of the typE 7asym, Wherel is the ampli-

in a fixed external potential, driven by an identical sequence,qe andy,symis a random number chosen uniformly out of
of random forces(particles are stopped and restarted withyhe jnterval[0,1]. No synchronization was observed for a

random velocities at regular intervals of length, follow oy mmetric noise term. Such different behavior, pointed out,
random trajectories which become identical for long times ify) ;; ot explained, by Maritan and Bana&i, can illumi-

7 is small enough. In Ref2] this transition from chaotic t0  4te the origin of the observed phenomenon. In order to find
nonchaotic behavior was attributed to the enhancement Qfy,¢ \vhy asymmetric and symmetric noises have such differ-
the random perturbation of the system resulting from a degp effects, we observe that choosing a number randomly

crease ofr. However, such an interpretation may be 00 om the intervall0,1] is equivalent to choosing it from the
S|mpl|st|c. In fact, the action of stopp_lng _and resta}rtlng theinterval[—l,l], then adding 1, and dividing the result by 2.
particles can be thought of as an infinite damping force, 5 statistical sense we can write

turned on for an infinitesimal time at regular intervals, fol-

lowed by a random driving force with the apprqpnate im- Nasyn= (Msymt 1)12. 3
pulse[6]. Reducingr has then the double effect of increasing

noise and dissipation. It thus follows that the observed synThus an asymmetric noise of the type specified above is
chronization cannot be attributed solely to noise. On thenothing else than a symmetric noise superimposed upon a
other hand, since at variance with our model system it ionstant background level. In Fig. 3 we show how the mean
impossible to disentangle the two effects, one cannot StUdgquare distancer between pairs of trajectories depends on
the roles played by noise and dissipation, respectively.  time for the Lorenz system modified by adding to E2p)

The system studied in Ref2] was examined also by the termI 7asym, (I'/2) nsym, OF T'/2, respectively8]. We
Maritan and Banavaf3], who noted that, in the limit of chose a value of great enough to attain synchronization
small 7, it can be understood in terms of the Langevin dy-with an asymmetric noise term. After a short initial transient,
namics[7]. They showed that particles moving in a fixed 4 rapidly decreases when we add eitliey,,q,mor I'/2: in-
external potential and following a Langevin equation of thedependently of the initial conditions, trajectories collapse
form x=—V,U(x)+ 7(t), with the same noise, collapse into the same final orbitwhich is random only in the first
into the same trajectory at long times. This result was intercasg. It is important to stress that the slope of the curve is
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FIG. 3. Mean square distance versus number of iteratieash FIG. 4. 77, versusl for the logistic map, withy chosen out of

unit_represents 1000 iteratic_)nﬁ;)r the Lorenz system modified by the interval[ — I",I']. Results were averaged over 100 runs of 10
adding to Eq.(2b), respectively, ['/2)nsym (curve a), I'nasym iterations starting from randomly chosen initial conditions. The line

(curveb), andI'/2 (curvec). Results were averaged over 100 ran- js obtained by connecting points through straight line segments.
domly chosen initial conditiond. = 20.

the same in the two cases, which makes clear that the Syfhean state-independent noise would simply bripgapidly
chronizing effect of the asymmetrical noise is determined nopt of the basin of attraction. It is possible, however, by
induces no synchronizatidisee curven), but by its constant  modify 4, . so that the noise acting on the map, though

background level, i.e., by the noise mean value. In order tQtate dependent, has a zero mean value. More specifically we
confirm this interpretation, we studied the behavior of thesngose  the 7's out of the nonsymmetrical interval

Lorenz system modified_ by adding to_Equ) the term [B—T,8+T], where the limitation|g|<I" has to be re-
' 7asymor I'/2, as a function of the amplitudeé. We found  gpected since if the's are only positive or only negative the
that synchronization is observed whénis greater than a gndition 0<x,<1 will be rapidly violated. In Fig. 57cc is
threshold value which is approximately the same in the tWQspawn as a function 0B, for I'=0.6. The average value of
cases. Results qualitatively similar to those reported abovg,q acceptedy’s increaées monotonically witg and van-
have been obtained for the Duffing oscillai6i. _ _ ishes aroung@=0.365. In the same figure we show the frac-
We consider now the noisy logistic map investigated ingon \ =N_/N whereN is the number of different realiza-
Ref. [3]: tions (100) performed for eacB, andN, is the number of
realizations for which the distance between pairs of trajecto-
ries with randomly chosen initial conditions, at the end of the
run, is of the order of the numerical precision. We note that
N\ differs from zero inside a restricted interval centered

Xnt1=4Xn(1=Xp) + 70, (4)

where 0<x,<1 and 7, is a random number chosen uni-
formly out of the interval[—T',I'] with the constraint
0<Xx,.1<1:if a given 5, violates this condition it is dis-
carded and a new, is chosen. Fol'>T"; (I';=0.5), tra-
jectories starting from different initial conditions collapse
into the same final orbit, when an identical sequencey’sf
is used independently of the initial conditig8]. This might
appear an example of synchronization induced by a sym-
metrical noise. However, as already observed by Maritan and
Banavar 3], the procedure adopted in order that satisfies
the constraint 8.x,,,1<<1 introduces a dependence of noise
on the state of the system. It follows that the accepés)
though belonging to a symmetrical interval, are not uni-
formly distributed. Indeed, as shown in Fig. 4, the average
value 7, of the acceptedy’s is negative for every” and
tends to zero only fof'— 0. It follows that, similarly to the
Lorenz system, synchronization is attained by applying to the
logistic map a noise with a nonzero mean value. Itis to be g 5 7 (solid line) and\ (dashed and dotted linesersus
stressed that this asymmetry, originating from the noise deg for the logistic map, with chosen out of the interval
pendence on the dynamics of the system, stems from [g3—0.6,8+0.6]. Results were averaged over 100 runs of a6d
deeper bias than that of a noise generated uniformly from ang’ iterations starting from randomly chosen initial conditions. The
asymmetric interva(such asnasym - values 0f7,.. are indistinguishable in the two cases, while those of
An obvious question is whether the logistic map can bex are represented with crosses and squares, respectively. Lines are
synchronized by a zero-mean noise. We note that a zer@btained by connecting points through straight line segments.
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around 8=0, and its value tends to 1 in the limit of an coupling nonlinear systems in a chaotic regime through iden-
infinite run length(as shown by the results obtained throughtical unbiasednoises does in general give origin to orbit
two different sets of calculation with run lengths of°ldnd  synchronization. We found, however, an important effect of
10 iterations, respectively Outside this interval and thus noise: particles subjected to dissipation and to a nonlinear
also in correspondence with,..=0, \ is zero for both sets  confining force, when driven by an identical sequence of
of calculations performed and thus no synchronization is exrandom forces of small amplitude with respect to dissipation,
pected to occur. The above described behavior appears to Bgnverge to a single final trajectory much faster than when
independent of the value 6f as confirmed by similar calcu- noise is absent. Since noise is ubiquitous in real systems, this
lations performed fol"=0.3, 0.8, and 1. A more general resylt would suggest that, provided that noise is not too
analysis of the influence of noise on the stability propertie%trong’ memory of the initial state is generally lost more
of one-dimensionallD) maps will be presented in the future rapidly than expected with dissipative forces only.
[9]. Here, through a linear stability analysis, it is shown that
the addition to a generic chaotic 1D map with a limited basin . )
of attraction of a noise satisfying the resulting constraint The author wishes to thank A. Maritan for a useful dis-
does not always induce synchronization of the trajectoriesussion. This work was supported by the Ministero
and may even enhance, rather than reduce, orbital divegell'Universitae della Ricerca Scientifica e Tecnologica and
gence. by the Consorzio Interuniversitario Nazionale per la Fisica
In conclusion, the present results show no evidence thalella Materia.
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